Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method.
نویسندگان
چکیده
We have modified the existing convolution method of the Monte Carlo simulation for finite photon beams with both translational and rotational invariance. The modified convolution method was applied to simulate the optical fluence distribution in tissue in dark-field confocal photoacoustic microscopy. We studied the influence of the size of the dark field and the illumination incident angle on the depth position of the effective optical focus (the region with the highest fluence) and the fluence ratio (the ratio of the optical fluence at the effective optical focus inside the tissue to the optical fluence on the tissue surface along the ultrasonic axis). Within the reach of diffuse photons, the depth position of the effective optical focus increases with the size of the dark field and is much less sensitive to the incident angle. The findings show that, while the fluence at the effective optical focus decreases, the fluence ratio increases with the size of the dark field. The incident angle has a weaker influence on the fluence ratio than the size of the dark field does. An incident angle between 30 and 50 degrees gives the highest fluence at the effective optical focus.
منابع مشابه
Influence of Optical Fluence Distribution on Photoacoustic Imaging
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithm...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملDevelopement a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code
Background: Monte Carlo (MC) modeling of a linear accelerator is a prerequisite for Monte Carlo dose calculations in external beam radiotherapy. In this study, a simple and efficient model was developed for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code Materials and methods: The head of Elekta SL-25 linac was simulated for 6 and 18 MV photon beams using MCNP4C MC code. Energ...
متن کاملMonte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملIn vivo dark-field reflection-mode photoacoustic microscopy.
Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high-numerical-aperture ultrasonic detection is designed and implemented in noninvasively imaged blood vessels in the skin in vivo. Dark-field optical illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high-numerical-aperture acoustic lens provides hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 48 17 شماره
صفحات -
تاریخ انتشار 2009